Efficient approximation algorithms for the achromatic number
نویسندگان
چکیده
منابع مشابه
Efficient Approximation Algorithms for Point-set Diameter in Higher Dimensions
We study the problem of computing the diameter of a set of $n$ points in $d$-dimensional Euclidean space for a fixed dimension $d$, and propose a new $(1+varepsilon)$-approximation algorithm with $O(n+ 1/varepsilon^{d-1})$ time and $O(n)$ space, where $0 < varepsilonleqslant 1$. We also show that the proposed algorithm can be modified to a $(1+O(varepsilon))$-approximation algorithm with $O(n+...
متن کاملAn Improved Approximation of the Achromatic Number on Bipartite Graphs
The achromatic number of a graph G = (V,E) with | V |= n vertices is the largest number k with the following property: the vertices of G can be partitioned into k independent subsets {Vi}1≤i≤k such that for every distinct pair of subsets Vi, Vj in the partition, there is at least one edge in E that connects these subsets. We describe a greedy algorithm that computes the achromatic number of a b...
متن کاملApproximation Algorithms for the Achrimatic Number
The achromatic number for a graph G = V E is the largest integer m such that there is a partition of V into disjoint independent sets V1 Vm such that for each pair of distinct sets Vi, Vj , Vi ∪ Vj is not an independent set in G. Yannakakis and Gavril (1980, SIAM J. Appl. Math. 38, 364–372) proved that determining this value for general graphs is NP-complete. For n-vertex graphs we present the ...
متن کاملMETAHEURISTIC ALGORITHMS FOR MINIMUM CROSSING NUMBER PROBLEM
This paper presents the application of metaheuristic methods to the minimum crossing number problem for the first time. These algorithms including particle swarm optimization, improved ray optimization, colliding bodies optimization and enhanced colliding bodies optimization. For each method, a pseudo code is provided. The crossing number problem is NP-hard and has important applications in eng...
متن کاملEfficient Approximation Algorithms for Weighted b-Matching
We describe a half-approximation algorithm, b-Suitor, for computing a b-Matching of maximum weight in a graph with weights on the edges. b-Matching is a generalization of the well-known Matching problem in graphs, where the objective is to choose a subset of M edges in the graph such that at most a specified number b(v) of edges in M are incident on each vertex v. Subject to this restriction we...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Theoretical Computer Science
سال: 2006
ISSN: 0304-3975
DOI: 10.1016/j.tcs.2006.05.007